• Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button
  • Slide title

    Write your caption here
    Button

WHEN ORDERING PARTS, HOW MUCH OVERAGE SHOULD WE PURCHASE?

The art and science of electrical component buying go hand in hand. The "art" element is when you establish and keep up the business ties with the distributors and suppliers of the components you want. This requires patience and skill. 


The "science" involved in procurement operations is the recognition and application of best practices. Building this best practice knowledge requires asking lots of questions and then selecting the most pertinent information from the responses. 


"How much overage should I buy when ordering parts?" is one of the most frequently asked questions in component sourcing. Overage is generally thought of as the extra parts you believe you might need to finish a production run. This could range from tens to even hundreds of parts, depending on your circumstances. 

Production waste, defective or out-of-spec parts, inventory requirements for spare parts, projected part shortages, end-of-life (EOL) announcements, anticipated price increases, delivery delays, and other factors are a few of the justifications for buying too many components. 


What We've learned  


These difficult purchasing circumstances can sometimes occur simultaneously. As an illustration, the recent pandemic resulted in a shortage of labor, which slowed down manufacturing lines and produced shortages. Delivery issues made these shortages worse. Due to the shortages, purchasing departments placed excessive orders, which increased pricing pressure. Additionally, the excessive ordering lengthened delivery times and resulted in inventory accumulations. These stockpiles are currently being sold off at a loss. 

Is overbuying therefore a wise move, especially in light of the fact that a scarcity of purchased components is one of the primary causes of late product delivery? And what standards should you use when figuring overages? It's far easier to ask than to answer those questions, and a lot depends on your particular production environment. So, let's go through the possible scenarios one by one. 


Prototypes 


Your part requirements shouldn't be a problem if you're an engineer working on a prototype. It might be a good idea to add one or two more pieces in a specific order, especially if overloading the board during testing could cause it to burn up or become static-fried. However, in general, you ought to be able to locate what you require, even though you won't be able to take advantage of any discounts for large orders. 


Small Test Run 


The requirement for component increases when you move through the prototype stage and ramp up to creating beta or sample volumes of your product. There are two schools of thinking, but the common norm is 5% overage. One is that, as a result of improper handling or other production errors, smaller-sized components typically require greater overage. The other is that less overage is typically needed for more expensive components since greater care is taken to prevent loss. 5% is a decent overage to bear in mind in either case. 


Automation in small batches 


A reasonably safe aim is 5 to 10% overage, based on the same considerations as with a short test run batch, if all you need are scheduled small production runs of boards made by your own facility's in-house manufacturing personnel. Although it's wise to plan for spoilage, production mistakes, shipping damage, etc., small runs let you keep a close eye on the quality of your production and your supply of parts. Therefore, paying attention to the minutiae might truly pay off at this level. 


Manufacturing on contract 


You graduate to automated component putting or insertion via machine when you reach this level of manufacturing. Whether you are procuring the components, or the manufacturer is, most manufacturers often want complete reels for small passive components that will be machine inserted. In either case, overage needs can often vary from 10% to 20%. 

Again, the price or size of the various parts may be an exception. More care should be taken when handling and mounting expensive components, such as CPUs, to prevent spoiling. Larger parts are frequently mounted by hand as well because problems with automatic insertion machines are less likely to occur. For costlier or larger components, the normal rule is for 5% overage. 


Conclusion  


When buying electronic components, it's a good idea to order a little extra. However, as with other business practices, the best quantity to order extra will depend on your personal circumstances, as well as component availability at the time and commercial realities


By Swetha Parvathy May 26, 2025
As we increasingly rely on electronic devices and appliances in our daily lives, electrical safety becomes a crucial aspect of home maintenance. Electrical accidents can be devastating, causing injuries, fatalities, and property damage. In this blog post, we'll share essential tips to help you ensure electrical safety at home and avoid electrocution. 1. Keep Water Away from Electricity Water and electricity are a deadly combination. Avoid using electrical appliances near water sources, such as: - Bathrooms - Kitchens - Swimming pools - Outdoor areas during rain or snow 2. Inspect Cords and Appliances Regularly Regular inspections can help identify potential electrical hazards. Check for: - Frayed or damaged cords - Overheating appliances - Sparks or unusual smells - Loose connections or faulty wiring 3. Use GFCIs (Ground Fault Circuit Interrupters) GFCIs are designed to prevent electrical shock by interrupting the power supply when a ground fault occurs. Install GFCIs in areas prone to moisture, such as: - Bathrooms - Kitchens - Outdoor areas 4. Avoid Overloading Outlets and Extension Cords Overloading outlets and extension cords can lead to electrical fires or electrocution. Be mindful of: - Using too many appliances on a single circuit - Overloading extension cords - Using damaged or frayed extension cords 5. Keep Children Safe Children are naturally curious, and electrical safety is crucial for their well-being. Take steps to: - Secure outlets with tamper-resistant covers - Keep electrical appliances out of reach - Teach children about electrical safety 6. Hire a Licensed Electrician For any electrical work, hire a licensed electrician to ensure: - Compliance with local electrical codes - Safe installation and maintenance - Proper diagnosis and repair of electrical issues 7. Be Cautious with Outdoor Electrical Equipment Outdoor electrical equipment, such as generators or power tools, requires special care. Ensure: - Proper grounding and installation - Regular maintenance and inspection - Safe operation and storage 8. Replace Damaged or Outdated Electrical Components Don't hesitate to replace damaged or outdated electrical components, such as: - Old or damaged wiring - Outdated electrical panels - Faulty circuit breakers Conclusion Electrical safety is a critical aspect of home maintenance. By following these tips, you can significantly reduce the risk of electrical accidents and ensure a safe living environment for yourself and your loved ones. Remember, electrical safety is everyone's responsibility.
By Swetha Parvathy May 2, 2025
The electronics industry is rapidly evolving, driven by technological advancements and changing consumer needs. Here are some emerging trends that are set to shape the future:  1. The Rise of Electric Vehicles Electric vehicles (EVs) are gaining popularity, driven by environmental concerns and government incentives. EVs offer a cleaner, more sustainable alternative to traditional gasoline-powered vehicles. Key developments in the EV space include: - Advancements in Battery Technology: Improved battery life, range, and charging speed are making EVs more practical for everyday use. - Expansion of Charging Infrastructure: Governments and companies are investing in charging infrastructure, making it easier to own and use an EV. - Increased Model Options: More automakers are launching EV models, offering consumers a wider range of choices. 2. Advancements in Printed Electronics Printed electronics involve using printing techniques to create electronic devices and components. This technology has the potential to revolutionize various industries, including: - Wearable Technology: Printed electronics can be used to create flexible, wearable devices that track vital signs and monitor health. - Flexible Displays: Printed electronics can enable the creation of flexible displays that can be used in a variety of applications, from smartphones to wearables. - Biomedical Devices: Printed electronics can be used to create implantable devices that monitor and treat medical conditions. 3. 3D Printing Technologies 3D printing, also known as additive manufacturing, is transforming the way we design and produce products. Key developments in 3D printing include: - Increased Speed and Accuracy: Advances in 3D printing technology are enabling faster and more accurate production of complex parts and products. - New Materials and Applications: Researchers are developing new materials and applications for 3D printing, including biomedical devices and aerospace components. - Customization and Personalization: 3D printing enables the creation of customized products tailored to individual needs and preferences. Conclusion These emerging trends are set to shape the future of the electronics industry, enabling new applications, products, and experiences. As technology continues to evolve, we can expect even more exciting developments in the years to come.